

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

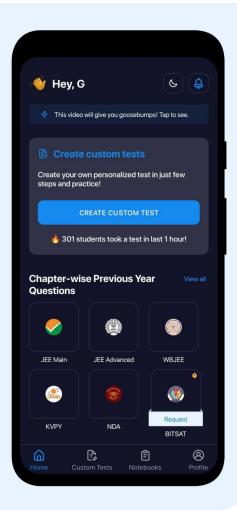
JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...



Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

Indefinite Integration

BASIC THEOREMS ON INTEGRATION

If f(x), g(x) are two functions of a variable x and k is a constant, then

(i)
$$\int k f(x) dx = k \int f(x) dx$$

$$(ii) \quad \int [f(x) \pm g(x)] \ dx = \int f(x) \ dx \pm \int g(x) \ dx$$

(iii)
$$\frac{d}{dx} \left(\int f(x) dx \right) = f(x)$$

(iv)
$$\int \left(\frac{d}{dx}f(x)\right)dx = f(x) + c$$

SOME STANDARD FORMULAE

(i)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c (n \neq -1)$$
 (ii)
$$\int \frac{1}{x} dx = \log_e |x| + c$$

(ii)
$$\int \frac{1}{x} dx = \log_{e} |x| + c$$

(iii)
$$\int e^x dx = e^x + c$$

(iv)
$$\int a^x dx = \frac{a^x}{\log_e a} + c = a^x \log_a e + c$$

(v)
$$\int \sin x \, dx = -\cos x + c$$

$$(vi) \int \cos x \, dx = \sin x + c$$

$$(vii) \int tan x dx = log | sec x | +c = -log | cos x | +c$$

(viii)
$$\int \cot x \, dx = \log |\sin x| + c$$

(ix)
$$\int \sec x \, dx = \log |\sec x + \tan x| + c = -\log |\sec x - \tan x| + c$$
 $= \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) + c$

$$(x) \quad \int \, \mathsf{cosec} \, x \, \, \mathsf{d} \, \mathsf{x} = - \log \, | \, \mathsf{cosec} \, x \, + \, \mathsf{cot} \, | \, \mathsf{x} \, | = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, - \, \mathsf{cot} \, | \, \mathsf{x} \, | = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, - \, \mathsf{cot} \, | \, \mathsf{x} \, | = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, \mathsf{x} \, | + \, \mathsf{c} \, = \log \, | \, \mathsf{cosec} \, | \, \mathsf$$

(xi)
$$\int \sec x \tan x dx = \sec x + c$$

(xii)
$$\int \csc x \cot x dx = -\csc x + c$$

(xiii)
$$\int \sec^2 x \, dx = \tan x + c$$

(xiv)
$$\int \csc^2 x \, dx = -\cot x + c$$

[2] Indefinite Integration

$$(xv) \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + c$$

(xvi)
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c \quad (x > a)$$

(xvii)
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c \quad (x < a)$$

(xviii)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c = -\cos^{-1} \left(\frac{x}{a}\right) + c$$

(xix)
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \log |x + \sqrt{x^2 + a^2}| + c = \sinh^{-1} \left(\frac{x}{a}\right) + c$$

$$(xx) \int \frac{1}{\sqrt{x^2 - a^2}} dx = \log |x + \sqrt{x^2 - a^2}| + c = \cosh^{-1} \left(\frac{x}{a}\right) + c$$

(xxi)
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$

(xxii)
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a} + c$$

(xxiii)
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a} + c$$

$$(xxiv)$$
 $\int \frac{1}{x\sqrt{x^2-a^2}} dx = \frac{1}{a} sec^{-1} \frac{x}{a} + c$

$$(xxv) \qquad \int e^{ax} \sin bx \ dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c = \frac{e^{ax}}{\sqrt{a^2 + b^2}} \sin \left\{ bx - tan^{-1} \left(\frac{b}{a} \right) \right\} + c$$

$$(xxvi) \qquad \int \, e^{ax} \cos bx \, \, dx = \frac{e^{ax}}{a^2+b^2} (a \cos bx + b \sin bx) + c = \frac{e^{ax}}{\sqrt{a^2+b^2}} \cos \left\{ bx - tan^{-1} \left(\frac{b}{a}\right) \right\} + c$$

$$(xxvii) \int e^{ax+b} (af(x)+f'(x))dx = e^{ax+b}f(x)+c$$

$$(xxviii)$$
 $\int f(ax+b)dx = \frac{1}{a}\phi(ax+b)+c$

METHOD OF INTEGRATION

Integration by Substitution

(a) When integrand is the product of two factors such that one is the derivative of the other i.e,

$$I = \int f(x) f'(x) dx$$

In this case we put f(x) = t to convert it into a standard integral.

(b) When integrand is a function of function

Indefinite Integration [3]

i.e.
$$\int f [\phi(x)] \phi'(x) dx$$

Here we put f(x) = t so that f'(x) dx = dt and in that case the integrand is reduced to $\int f(t) dt$.

(c) Integral of a function of the form (ax+b) dx

Here put ax + b = t and convert it into standard integral. Obviously if $\int f(x) dx = \phi(x)$, then

$$\int f(ax+b) dx = \frac{1}{a} \phi (ax+b)$$

(d) Some standard forms of integrals

The following three forms are very useful to write integral directly.

(i)
$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c \text{ (where } n^{-1} - 1)$$

(ii)
$$\int \frac{f'(x)}{f(x)} dx = \log [f(x)] + c$$

(iii)
$$\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c$$

(e) Integral of the form $\int \frac{dx}{a \sin x + b \cos x}$

Putting $a = r \cos \theta$ and $b = r \sin \theta$, we get

$$I = \int \frac{dx}{r \sin(x + \theta)} = \frac{1}{r} \int \cos ex (x + \theta) dx$$

$$= \frac{1}{r} \, \log \tan \left(x/2 + \, \theta \, /2 \right) + c \ = \int \! \frac{1}{\sqrt{a^2 + b^2}} \! \log \tan \left(\frac{x}{2} + \frac{1}{2} tan^{-1} \frac{b}{a} \right) + c$$

(f) Standard Substitution

Following standard substitution will be useful-

Integrand form

(i)
$$\sqrt{a^2 - x^2}$$
 or $\frac{1}{\sqrt{a^2 - x^2}}$

$$x = a \sin \theta$$

(ii)
$$\sqrt{x^2 + a^2}$$
 or $\frac{1}{\sqrt{x^2 + a^2}}$

$$x = a \tan \theta \text{ or } x = a \sinh \theta$$

(iii)
$$\sqrt{x^2 - a^2}$$
 or $\frac{1}{\sqrt{x^2 - a^2}}$

$$x = a \sec \theta$$
 or $x = a \cos h \theta$

(iv)
$$\sqrt{\frac{x}{a+x}}$$
 or $\sqrt{\frac{a+x}{x}}$ or $\sqrt{x(a+x)}$ or $\frac{1}{\sqrt{x(a+x)}}$

$$x = a tan^2 \theta$$

$$(v) \ \sqrt{\frac{x}{a-x}} \quad \text{or} \quad \sqrt{\frac{a-x}{x}} \quad \text{or} \quad \sqrt{x(a-x)} \quad \text{or} \quad \frac{1}{\sqrt{x(a-x)}}$$

$$x = a \sin^2 \theta$$

[4] Indefinite Integration

(vi)
$$\sqrt{\frac{x}{x-a}}$$
 or $\sqrt{\frac{x-a}{x}}$ or $\sqrt{x(x-a)}$ or $\frac{1}{\sqrt{x(x-a)}}$ $x = a \sec^2 \theta$
(vii) $\sqrt{\frac{a-x}{a+x}}$ or $\sqrt{\frac{a+x}{a-x}}$ $x = a \cos 2\theta$
(viii) $\sqrt{\frac{x-\alpha}{\beta-x}}$ or $\sqrt{(x-\alpha)(\beta-x)}$ $(b>a)$ $x = a \cos^2 \theta + b \sin^2 \theta$

(a) Integration by Parts:

If u and v are the differentiable functions of x, then $\int u \cdot v \, dx = u \int v dx - \int \left[\left(\frac{d}{dx}(u) \right) \left(\int v dx \right) \right] \, dx$.

i.e. Integral of the product of two functions = first function x integral of second function – \int [derivative of first) x (Integral of second)]

- (i) How to choose Ist and IInd function: If two functions are of different types take that function as Ist which comes first in the word ILATE, where I stands for inverse circular function, L stands for logrithmic function, A stands for algebric functions, T stands for trigonometric and E for exponential functions.
- (ii) For the integration of logarthmic or inverse trigonometric functions alone, take unity (1) as the second function
- (b) If the integral is of the form $\int e^x [f(x) + f'(x)] dx$ then by breaking this integral into two integrals, integrate one integral by parts and keep other integral as it is, By doing so, we get $-\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$
- (c) If the integral is of the form $\int [x f'(x) + f(x)] dx$ then by breaking this integral into two integrals integrals one integral by parts and keep other integral as it is, by doing so, we get $\int [x f'(x) + f(x)] dx = x f(x) + c$ Integration of the Trigonometrical Functions

(i)
$$\int \frac{dx}{a + b \sin^2 x}$$
, (ii)
$$\int \frac{dx}{a \cos^2 x + b}$$
 (iii)
$$\int \frac{dx}{a \cos^2 x + b \sin^2 x}$$
, (iv)
$$\int \frac{dx}{(a \cos x + b \sin x)^2}$$

(For their integration we multiply and divide by $\sec^2 x$ and then put $\tan x = t$.) Some integrals of different expressions of e^x

$$(i) \quad \int \frac{ae^x}{b+ce^x} dx \qquad [put \ e^x = t]$$

(ii)
$$\int \frac{1}{1+e^x} dx$$
 [multiplying and divide by e^{-x} and put $e^{-x} = t$]

(iii)
$$\int \frac{1}{1-e^x} dx$$
 [multiplying and divide by e^{-x} and put $e^{-x} = t$]

(iv)
$$\int \frac{1}{e^x - e^{-x}} dx$$
 [multiply and divided by e^x]

Indefinite Integration [5]

$$(v) \quad \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx \qquad \qquad \left[\frac{f'(x)}{f(x)} form \right]$$

(vi)
$$\int \frac{e^x + 1}{e^x - 1} dx$$
 [multiply and divide by $e^{-x/2}$]

(vii)
$$\int \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 dx$$
 [integrand = $\tanh^2 x$]

(viii)
$$\int \left(\frac{e^{2x} + 1}{e^{2x} - 1}\right)^2 dx$$
 [integrand = $\coth^2 x$]

(ix)
$$\int \frac{1}{(e^x + e^{-x})^2} dx$$
 [integrand = $\frac{1}{4}$ sech²x]

(x)
$$\int \frac{1}{(e^x - e^{-x})^2} dx$$
 [integrand = $\frac{1}{4}$ cosech²x]

(xi)
$$\int \frac{1}{(1+e^x)(1-e^{-x})} dx$$
 [multiply and divide by e^x and put $e^x = t$]

(xii)
$$\int \frac{1}{\sqrt{1-e^x}} dx$$
 [multiply and divide by $e^{-x/2}$]

(xiii)
$$\int \frac{1}{\sqrt{1+e^x}} dx$$
 [multiply and divide by $e^{-x/2}$]

(xiv)
$$\int \frac{1}{\sqrt{e^x - 1}} dx$$
 [multiply and divide by $e^{-x/2}$]

(xv)
$$\int \frac{1}{\sqrt{2e^x - 1}} dx$$
 [multiply and divide by $\sqrt{2}e^{-x/2}$]

(xvi)
$$\int \sqrt{1-e^x} dx$$
 [integrand = $(1-e^x) / \sqrt{1-e^x}$]

(xvii)
$$\int \sqrt{1-e^x} dx$$
 [integrand = $(1 + e^x) / \sqrt{1+e^x}$]

(xviii)
$$\int \sqrt{e^x - 1} dx$$
 [integrand = $(e^x - 1) / \sqrt{e^x - 1}$]

(xix)
$$\int \sqrt{\frac{e^x + a}{e^x - a}} dx$$
 [integrand = $(e^x + a) / \sqrt{e^{2x} - a^2}$]

8.
$$\int \frac{x^2 + 1}{x^4 + kx^2 + 1} dx$$
 (Divide N.r and Dr by x^2 then put $x \pm 1/x = t$)

9.
$$\int \frac{x^2 - 1}{x^4 + kx^2 + 1} dx$$
 (Divide N.r and Dr by x^2 then put $x \pm 1/x = t$)

[6] Indefinite Integration

$$N^r = A\left(D^r\right) + B \ \frac{\text{d}}{\text{d}x}(D^r) + C$$

10.
$$\int \frac{x^2}{x^4 + kx^2 + 1} dx \qquad \qquad x^2 = \frac{1}{2} \left\{ (x^2 + 1) + (x^2 - 1) \right\}$$

11.
$$\int \frac{1}{x^4 + kx^2 + 1} dx$$

$$1 = \frac{1}{2} \{ (x^2 + 1) - (x^2 - 1) \}$$

12.
$$\int \frac{1}{x^4 + a^4} dx$$

$$1 = \frac{1}{2a^2} \{ (x^2 + a^2) - (x^2 - a^2) \}$$

13.
$$\int \frac{1}{(ax+b)\sqrt{cx+d}} dx; \qquad \text{Put } (x+d) = t^2$$

14.
$$\int \frac{1}{(px+q)\sqrt{ax^2+bx+c}} dx; \quad Put (px+q) = \frac{1}{t}$$

15.
$$\int \frac{1}{(ax^2 + bx + c)\sqrt{px + q}} dx; \qquad \text{Put } (px + q) = t^2$$

16.
$$\int \frac{1}{(Ax^2 + B)\sqrt{cx^2 + D}} dx$$
; Put $(x = 1/t)$

17.
$$\int \frac{1}{(a\sin^2 x + b\sin x \cos x + c.\cos^2 x)} dx$$

18.
$$\int \frac{1}{(a+b\sin x)} dx$$
; put $\sin x = \frac{2\tan x/2}{1+\tan^2 x/2}$

19.
$$\int \frac{1}{(a+b\cos x)} dx$$
 put $\cos x = \left(\frac{1-\tan^2 x/2}{1+\tan^2 x/2}\right)$ & put $\tan x/2 = t$

20.
$$\int \frac{1}{(a\sin x + b\cos x + c)} dx$$

21.
$$\int \frac{P\sin x + q\cos x + r}{a\sin x + b\cos x + c} dx$$